Announcements

Program 6 up, due next Friday
Next OWL assignment up this afternoon

Final Exam: Monday, December 17 - 1:30
The concept of an interface:

• A mechanism for specification

• We’ve seen them before: the Java API

• Encapsulation: working on a “need-to-know” basis

• An interface is a kind of contract

• Big principles -> reuse; hygiene
Here is the “Scoring” interface -it’s just two methods -- and not even that: the methods involved are “disembodied”

```java
public interface Scoring{
    public double getScore();
    public void setScore(double newScore);
}
```
Which classes might implement Scoring?

Baseball players - runs scored
Golfers - money earned
Employees - days arriving on time
Union members - seniority
public class CookieSeller implements Scoring {

 private String name;
 private double boxesSold;

 public CookieSeller(String n, double sold) {
 name = n;
 boxesSold = sold;
 }

 public String getName() { return name; }

 public double getBoxesSold() { return boxesSold; }
}
public void setName(String newName){
 name = newName; }

public void setBoxesSold(double sold){
 boxesSold = sold; }

public double getScore(){ // req by interface
 return boxesSold;
}

public void setScore(double sold){ // interface req
 boxesSold = sold;
}
public class Scorefns {
 // contains methods that exploit Scoring interface

 public static int scoreMax(Scoring[] theArray) {
 // reports location of highest scoring entry
 int highPos = 0;
 for (int j = 1; j < theArray.length; j++) {
 if (theArray[j].getScore() > theArray[highPos].getScore()) {
 highPos = j;
 }
 }
 return highPos;
 }
}
An interface can contain constants, and may be just constants..

```java
public interface Directions {
    final int NORTH = 0;
    final int EAST = 1;
    final int SOUTH = 2;
    final int WEST = 3;
}

class BigTrip implements Directions {
    ...
    if (myDir() == NORTH) setDir(EAST);
}
Extremely important library interface: **Comparable** - it’s intended to model the “natural” ordering on elements in a class

A single method: `compareTo`

```java
public int compareTo(Object other);
```

Tricky: It’s binary - compares two objects, the calling object, and the parameter object

Note: the parameter is completely general: it’s of type **Object**. This is something we’ll have to deal with.
The “meaning” of compareTo:

a,b are of some type (they’re cars, or strings, or tennis balls, or whatever)

\[ a.\text{compareTo}(b) < 0 \] means: a comes before b in natural ordering

\[ a.\text{compareTo}(b) == 0 \] means: a, b, equal in natural ordering

\[ a.\text{compareTo}(b) > 0 \] means: a comes after b in natural ordering.

Example: String implements Comparable; natural ordering - lexicographic

a = “cow”; b = “snake”; c = “walrus”;

a.compareTo(b) ->

b.compareTo(c) ->

c.compareTo(a) ->

c.compareTo(c) ->
public class Infant2 implements Comparable{
    private String name;
    private int age;
    public Infant2(String who, int months){
        name = who;
        age = months;
    }
    ...
    public int compareTo(Object other){ // order: age
        int b = ((Infant2)other).getAge();
        int a = this.age;
        return(a-b);
    }
}
public class Infant2 implements Comparable{
    private String name;
    private int age;
    public Infant2(String who, int months){
        name = who;
        age = months;
    }
    ...
    public int compareTo(Object other){
        int b = ((Infant2)other).getAge();
        int a = this.age;
        return(a-b);
    }
}
Usage:

If (myKid.compareTo(yourKid) < 0)
    System.out.println("my kid is younger than yours");
public int compareTo(Object other){
    String a = this.name;
    String b = ((Infant2)other).getName();
    return(a.compareTo(b));
}

In other words: we “hand off” the ordering decision to String..
Why is Comparable valuable?

It’s so pervasive - we’re always comparing things - with Comparable we can build functionality around it:

Arrays.sort(words);  [Arrays in java.util]

words: an array of Strings;

Arrays: library class with array manipulation functionality
sort: put things in order
This combo works for any array for which the object type implements Comparable.

Note: there’s a version of sort, Arrays.sort(words, j, k), that sorts an array words from j through k.
import java.util.*;

public class StringTest{
    public static void main(String[] args){
        String[] words = {"now", "is", "the", "time", "to", "go"};
        for(int j = 0; j < words.length; j++)
            System.out.print(words[j] + " ");
        System.out.println();
        Arrays.sort(words);
        System.out.println("*and now in sorted order*");
        for(int j = 0; j < words.length; j++)
            System.out.print(words[j] + " ");
        System.out.println();
    }
}
Program output:

now is the time to go
*and now in sorted order*
go is now the time to
Another notion: an **abstract class**

At one extreme -> full-blown, concrete classes
at other extreme -> interfaces: everything disembodied
In the middle: abstract classes:
These are classes that:

1) Cannot be instantiated

2) Generally have at least one method marked “abstract”

3) You make “real” classes out of them by extending them, providing bodies for the abstract methods.
One way to think of an abstract class:

it’s a fancy stereo system, all ready to go, except that the component that provides the sound isn’t there, although the wire to the sound component is ready to be plugged in.

The sound component is abstract.

You build a “concrete” system by extending what you have - you add a sound source.
import java.util.Scanner;
import java.io.*;

class LineReader {
    String fileName; // external file name
    Scanner scan; // Scanner for reading from file

    LineReader(String f) throws IOException {
        fileName = f;
        scan = new Scanner(new FileReader(fileName));
    }
}
public void readLines()
{
    while(scan.hasNext()){
        processLineLine(scan.nextLine());
    }
    scan.close();
}

public abstract void processLine(String line);

import java.io.*;
import java.util.*;

public class NewEcho extends LineReader {

    public NewEcho(String f) throws IOException{
        super(f);
    }

    public void processLine(String line){
        System.out.println(line);
    }
}
import java.util.*;
import java.io.*;
public class LineDriver{
public static void main(String[] args){
try{
Scanner scan = new Scanner(System.in);
System.out.println("Enter name of a text file");
String fileName = scan.next();
NewEcho r = new NewEcho(fileName);
r.readLine();
}
catch(Exception e){e.printStackTrace();}
}
public abstract class JobTimer {

    public abstract void doJob();
        // does some job, to be named later in an extension

    public void runJob() {
        // garbage collector to make more memory available
        System.gc();
        long s1 = System.currentTimeMillis();
        doJob();
        doJob();
        long s2 = System.currentTimeMillis();
        long runTime = (s2 - s1);
        System.out.println("running time in milliseconds: " + runTime);
    }
}
public class AddTimer extends JobTimer {
    //how many times operation performed
    private long numOperations = 10000000;
    //implementation of the abstract method

    public void doJob(){
        long k = 0;
        int result = 0, operand = 12345;
        while(k<numOperations){
            result = operand + operand;
            k++;
        }
    }
}
public static void main(String[] args) {
    AddTimer a = new AddTimer();
    a.runJob();
}

running time in milliseconds: 186
And now let’s start graphics and GUls, or Graphical User Interfaces..

GUls are pervasive - think of almost any website, or restaurant computer system, or…

Java gets at GUls in two ways: via Applets - these are programs that are suitable for transporting over the web, and displaying with a browser;

and application programs, which you run directly (not through a browser).

The two concepts are pretty close. Here we’ll work on the latter.
good day!
import java.awt.*;
import javax.swing.*;
public class BabyGraphics{
    public static void main(String[] args){
        JFrame frame = new JFrame("Starter Work");
        Container c = frame.getContentPane();
        BabyPanel p = new BabyPanel();
        c.add(p); // add panel to frame's container
        frame.pack();
        frame.setVisible(true);
        frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
    }
}
A **JFrame** is like a window frame..

It comes with a content pane, a container that holds things (surfaces..)

We’ll place on the surface something we can draw on /write on: a **Jpanel**

Then we do just that: we write on it, draw on it, (and also color it).
import java.awt.*;
import javax.swing.*;

class BabyPanel extends JPanel{

    public BabyPanel(){
        setPreferredSize(new Dimension(700,300));
        setBackground(Color.red);
    }

    public void paintComponent(Graphics g){
        super.paintComponent(g);
        g.drawLine(0,0,30,150);
        g.drawString("good day!",10,15);
    }
}
}